

Tetrahedron Letters 41 (2000) 6959-6963

TETRAHEDRON LETTERS

Reaction of polyfluorinated imines with trifluoromethyltrimethylsilane. Direct synthesis of *N*-(perfluoro-*t*-butyl)amines

Viacheslav A. Petrov*

DuPont Central Research and Development,[†] Experimental Station, PO Box 80328, Wilmington, DE 19880-0328, USA

Received 29 June 2000; accepted 15 July 2000

Abstract

The reaction of *N*-arylimines of hexafluoroacetone and $CF_3Si(CH_3)_3$ (1) in the presence of CsF results in a 48–84% yield formation of $ArN(H)C(CF_3)_3$. The reaction requires an equimolar amount of CsF and rapidly proceeds in solvents such as THF or monoglyme. Interaction of $CF_3N=C(CF_3)_2$ with excess of **1** leads to the formation of novel amine [(CF_3)_3C]_2NH. Stable salt of this amine is isolated in a reaction of isomeric $CF_3CF_2N=CFCF_3$ with an excess of **1** in the presence of CsF. © 2000 Published by Elsevier Science Ltd.

Trifluorotrimethylsilane (1) is a powerful trifluoromethylating agent,¹ which has been used (usually under catalysis by fluoride anion) for the introduction of a CF₃ group into a variety of organic substrates, including aldehydes,^{2–4} hydrocarbon and polyfluorinated ketones,^{5–7} esters,⁷ and sulfur-based electrophiles.^{3,7,8} However, imines were reported to have a sluggish reactivity towards $1.^{1,9-11}$ Trifluoromethylation of imines using 1 could be achieved, either under special conditions (in the presence of trimethylsilylimidazole¹²) or by use of substrates with an activated C=N bond, such as nitrones,⁹ azirines¹⁰ or perfluoro-2,6-dimethyl-1-azacyclohexene.¹³ Imines of polyfluorinated ketones $R_f(R_f')C=NR$ (readily available from reaction of polyfluoroketones with either amines¹⁴ or arylisocyanates^{15–17}) known to have a C=N bond highly reactive towards nucleophiles^{18,19} due to its polarization by two perfluoroalkyl groups.

In this work it is found that *N*-arylimines of hexafluoroacetone $(2\mathbf{a}-\mathbf{p})$ rapidly react with reagent 1 in the presence of equimolar amounts of CsF to give corresponding aryl-*N*-perfluoro-*t*-butyl amines $3\mathbf{a}-\mathbf{p}$ in moderate to high yield.

^{*} Corresponding author.

[†] Publication No. 8089.

$Ar-N=C(CF_3)_2 + CF_3Si(CH_3)_3 +$	CoF 15-25°C, 2-16h	$Ar-N(H)C(CF_3)_3 + FSi(CH_3)_3$	
1	1) THF 2) H ⁺	AI-N(II)C(CF3/3 + F3I(CH3/3	
Starting imine	Ar	Product, yield, %	
2a	C ₆ H ₅	3a (77)	
2 b	$2-CH_3-C_6H_4$	3b (49)	
2 c	$4-CH_3-C_6H_4$	3c (62)	
2d	$2-CF_3-C_6H_4$	3d (78)	
2e	3-CF ₃ -C ₆ H ₄	3e (74)	(1)
2f	$4 - CF_3 - C_6H_4$	3f (84)	(1)
2g	3-Cl-C ₆ H ₄	3g (71)	
2 h	4-CH ₃ O-C ₆ H ₄	3h (48)	
2i	4-Br-C ₆ H ₄	3i (81)	
2j	$4-O_2N-C_6H_4$	3j (79)	
2k	$2 - F - C_6 H_4$	3k (67)	
21	$3-F-C_6H_4$	31 (67)	
2 m	$4 - F - C_6 H_4$	3m (73)	
2 n	2,4-F-C ₆ H ₃	3n (75)	
20	3,5-CF ₃ -C ₆ H ₃	3o (69)	
2 p	$4-CF_3-C_6F_4$	3p (67)	

Despite the fact that aryl amines **3** are high boiling point liquids (with the exception of **3j** being a solid), they can be purified by distillation. All ¹⁹F NMR spectra of amines **3** contain a signal of $(CF_3)_3C$ fragment around -70 ppm. ¹³C NMR spectra of compounds **3a**,**b**,**h** contain a resonance around 70 ppm with corresponding splitting pattern ($J_{C-F}=27-29$ Hz, decet) assigned to the tertiary carbon of *F-t*-butyl group (see Table 1). Typically, mass spectra (EI) of amines **3** exhibit a signal of parent ion, along with intense signals corresponding to subsequent loss of CF_3^+ , $C_2F_6H^+$ and CF_3CN^+ fragments by molecular ion. IR spectra of amines **3** exhibit a doublet around 3400 and 3450 cm⁻¹ assigned to N–H group. The structure of **3j** is firmly established by X-ray diffraction.

The choice of the solvent is crucial for a trifluoromethylation reaction. For example, interaction of **2a** and **1** in CH₃CN solvent proceeds rapidly but an isolated yield of corresponding amine does not exceed 20-25% due to extensive tar formation. However, in solvents such as THF and monoglyme a fast and slightly exothermic reaction rapidly proceeds (20–25 $^{\circ}$ C, 2–3 h) producing amine 3a in 77% yield. On the other hand, with ether as a solvent the reaction is quite slow and conversion of imine 2a, even after several days at ambient temperature, does not exceed a few percent. In sharp contrast to trifluoromethylation of carbonyl compounds, often carried out in the presence of a catalytic amount of CsF,⁷ the process represented by Eq. (1) requires an equimolar amount of CsF, since the interaction between 1 and 2 results in the formation of cesium salt of corresponding amine 3 (see below), which is converted into a final product during aqueous work-up of the reaction mixture. For example, trifluoromethylation of 2a in the presence of 10 mol% of CsF results in a 10 to 15% conversion of starting material (THF, 12 h at 25°C), whereas the same reaction carried out in the presence of an equimolar amount of CsF is completed after 2–3 h at ambient temperature. The rate of reaction is sensitive to the nature of substituent in an aromatic ring of imine, and reaction between 1 and imines 2b and 2h carrying electron-donating substituents in phenyl ring $(Ar = 2-CH_3-C_6H_4- and 4-CH_3O-C_6H_4, december 2)$ respectively) is noticeably slower compared to 2a and requires 10 to 16 h to achieve complete conversion of starting materials. On the other hand, the reaction of 1 and imines 2d-f (Ar = 2-, 3-

Comp. no.	B.P./mmHg (m.p.)	¹⁹ F NMR	¹ H NMR	IR (cm ⁻¹)	Anal.% found (calc) or MS
3a ^b	45-46/12	-68.96	3.85 (1H), 7.00–7.30 (5H)	3403, 3450	F, 54.97 (54.95)
3b°	64/20	-69.21	2.33 (3H), 3.78 (1H), 7.08 (1H), 7.20 (3H)	3427, 3478	F, 52.29 (52.58)
3c	64-64.5/18	-68.88	2.18 (3H), 3.75 (1H), 6.90–7.10 (4H)	3403, 3450	C, 39.89 (40.63); H, 2.30 (2.48); F, 51.71 (52.58); N, 4.14 (4.31)
3d	50.5-51/19	-61.37 (3F, m), -69.13 (9F, q, 1.9 Hz)	4.73 (1H), 7.21 (1H), 7.36 (1H), 7.51 (1H), 7.64 (1H)	3477	F, 59.78 (60.13)
3e ^d	65/19	-63.45 (3F), -68.86 (9F)	4.00 (1H), 7.26 (1H), 7.36 (3H)	3395, 3456	F, 60.48 (60.13)
3f	71-72/15	-62.88 (3F), -68.90 (9F)	4.15 (1H), 7.10 (2H), 7.49 (2H)	3405, 3453	C, 34.02 (34.85); H, 1.26 (1.33); F, 60.55 (60.13); N, 3.82 (3.69)
3g	73-74/16	-68.88	3.95 (1H), 6.90-7.30 (4H)	3400, 3433	F, 50.27 (49.48)
3h ^e	63/5	-68.78	3.76 (1H), 3.82 (3H), 6.82 (2H), 7.12 (2H)	3411, 3477	F, 50.00 (50.12)
3i	83-83.5/19	-68.78	3.95 (1H), 7.04 (2H), 7.43 (2H)	3400, 3441	C, 30.56 (30.79); H, 1.46 (1.29); F, 43.58 (43.84); N, 3.53 (3.59)
3ј	(83–84) ^f	-68.97	6.61 (1H), ^g 7.41 (2H), 8.22 (2H)	3390 ^h	C, 33.74 (33.72); H, 1.49 (1.42); N, 7.79 (7.87)
3k	43.5-44/17	-69.57 (9F), -127.75 (1F)	4.10 (1H), 6.80-7.20 (4H)	3400, 3450	F, 58.83 (57.72)
31	50-51/18	-68.92 (9F), -112.19 (1F)	3.95 (1H), 6.68 (2H)	3400, 3444	329 (M ⁺ , 80%)
3m	56.5-57/18	-68.92 (9F), -116.32 (1F)	3.80 (1H), 6.93 (2H), 7.22 (2H)	3400, 3456	F, 57.65 (57.72)
3n	45-46/15	-69.51 (9F), -112.23 (1F), -120.55 (1F)	3.95 (1H), 6.88 (2H), 7.31 (1H)	3400, 3455	F, 59.95 (60.20)
30	76/15	-63.90 (6F), -68.97 (9F)	4.25 (1H), 7.48 (2H), 77.60 (1H)	3406, 3456	C, 32.27 (32.23); H, 1.02 (0.90); N, 3.29 (3.13)
3р	76/110	-56.92 (3F), -69.94 (9F), -140.82 (2F), -143.11 (2F)	3.80	3397, 3425	C, 28.97 (29.29); H, 0.27 (0.22); N, 3.41 (3.10)
5 ⁱ 5a ^g	100-101	-69.89 -71.49	2.89	3454	453 (M ⁺ , 3%)

Table 1 Experimental data for amines 3a–3p, 5 and 5a^a

^a NMR solvent is CDCl₃ unless specified.

^b ¹³C NMR {H}: 69.99 (decet, 25 Hz), 121.28 (q, 300 Hz), 125.54, 128.52, 139.38.
 ^c ¹³C NMR {H}: 16.30, 70.30 (decet, 27 Hz), 121.28 (q, 290 Hz), 125.19, 125.34, 130.48, 132.96, 139.38.

^d See also Ref. 24.

^e ¹³C NMR {H}: 54.14, 70.19 (decet, 27 Hz), 113.70, 121.25 (q, 293 Hz), 128.91, 131.52.

^f Crystallized from hexane.

^g In deuteroacetone.

and 4-CF₃-C₆H₄-, respectively) is much faster. It is exothermic and rapidly proceeds under mild conditions (10–25°C, 2 h). Trifluoromethylation of imine $2p^{20}$ proceeds under similar conditions producing perfluorinated amine 3p in 67% yield.

All attempts to prepare corresponding perfluoro-*t*-butyl amine from $CH_3N=C(CF_3)_2^{14}$ failed, since even under mild conditions in THF as a solvent, exothermic and hard to control reaction leads to rapid darkening of the reaction mixture and extensive tar formation, although perfluorinated imine $CF_3N=C(CF_3)_2$ (4) (known to exist in equilibrium with isomer containing terminal C=N bond²¹) under similar conditions rapidly reacts with several mols of 1. The reaction of 4, 1 and CsF (ratio 1:4:1.1, respectively, 10–25°C, 2–3 h) results in high yield formation of a novel representative of stable perfluorinated secondary amine-bis (*F*-*t*-butyl)-amine (5) (Eq. (2)).

The formation of **5** is a result of multiple sequential nucleophilic trifluoromethylations of imine **4** leading to complete replacement by the CF_3 groups of fluorine substituents in α -position to nitrogen.

Stable salt **5a** is isolated in the reaction of isomeric *F*-3-azapentene- 2^{22} and excess of reagent **1** after filtration of reaction mixture and removal of solvent (Eq. (3)).

$$CF_{3}CF_{2}N=CFCF_{3}+1 \xrightarrow{C_{s}F} [(CF_{3})_{3}C]_{2}N \xrightarrow{C_{s}} f_{s}$$

$$5a, 95\%$$
(3)

Compound 5a is a white solid sparingly soluble in polar organic solvents (acetonitrile, acetone, THF) and stable under normal conditions in the absence of moisture. The structure of 5a is confirmed by X-ray analysis.

Although the majority of known compounds containing $-C(CF_3)_3$ (with very few exceptions^{23,24}) have been prepared utilising the chemistry of highly toxic perfluoroisobutene,^{25,26} this methodology cannot be applied for direct synthesis of amines carrying the $-C(CF_3)_3$ group at nitrogen, while described in this work, a reaction of hexafluoroacetone imines with **1** provides a direct and simple route to *N*-perfluoro-*t*-butyl amines.

In a typical experiment, a mixture of 0.05 mol of imine and 0.055 mol of **1** is added dropwise to a stirred mixture of 0.06 mol of dry CsF in 70 ml of THF to keep the temperature between 15 to 25° C. The reaction mixture is agitated at ambient temperature for 2–3 h (12–16 h for **2b** and **2h**), until the complete conversion of imine is achieved (GC), diluted with 150 ml of 10% hydrochloric acid, and extracted with CH₂Cl₂ (2×50 ml). The organic layer is dried over MgSO₄, the solvent removed and the residue distilled.

Acknowledgements

The author thanks Dr. Grushin for stimulating discussions, W. Marshall for carrying out X-ray analysis of **3j** and **5a** and R. Smith Jr. for technical support.

References

- 1. For a review on the application of fluoroalkylsilanes in organic synthesis, see: Prakash, G. K. S.; Yudin, A. K. *Chem. Rev.* **1997**, 97, 757–786.
- 2. Ramaiah, P.; Krishnamurti, R.; Prakash, G. K. S. Org. Synth. 1995, 72, 232-240.
- 3. Patel, N. R.; Kirchmeier, R. L. Inorg. Chem. 1992, 31, 2537-2540.
- 4. Krishnamurti, R.; Bellew, D. R.; Prakash, G. K. S. J. Org. Chem. 1991, 56, 984-989.
- 5. Nelson, D. W.; O'Reilly, N. J.; Speier, J.; Gassman, P. G. J. Org. Chem. 1994, 59, 8157–8171.
- 6. Kotun, S. P.; Anderson, J. D. O.; DesMarteau, D. D. J. Org. Chem. 1992, 57, 1124-1131.
- 7. Singh, R. P.; Cao, G.; Krishnamurti, R.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1999, 64, 2873–2876.
- 8. Kolomeitsev, A. A.; Movchun, V. N.; Kondratenko, N. V.; Yagupolski, Yu. L. Synthesis 1990, 1151-1152.
- 9. Nelson, D. W.; Easly, R. A.; Pintea, B. N. V. Tetrahedron Lett. 1999, 40, 25-28.
- 10. Felix, C. P.; Khatimi, N.; Laurent, A. J. Tetrahedron Lett. 1994, 35, 3303-3304.
- 11. Petasis, N. A.; Yudin, A. K.; Zavialov, I. A.; Prakash, G. K. S.; Olah, G. A. Synlett 1997, 606-608.
- 12. Blazejewski, J.-C.; Anselmi, E.; Wilmshurst, M. P. Tetrahedron Lett. 1999, 40, 5475–5478.
- 13. Banks, R. E.; Besheesh, M. K.; Lawrence, N. J.; Tovell, D. J. J. Fluorine Chem. 1999, 97, 79-84.
- 14. Middleton, W. J.; Krespan C. G. J. Org. Chem. 1965, 30, 1398–1402.
- 15. Zeifman, Yu. V.; Gambaryan, N. P.; Knunaynts, I. L. Dokl. Akad. Nauk SSSR 1963, 153, 1334–1336.
- 16. Hall, G. E.; Middleton, W. J.; Roberts, J. J. Am. Chem. Soc. 1971, 93, 4778-4781.
- 17. Petrov, V. A.; Khasnis, D. D. Isr. J. Chem. 1999, 39, 147-150.
- 18. Fokin, A. V.; Kolomiets, A. F.; Vasil'ev, N. V. Uspekhi Khimii 1984, 53, 398-430.
- 19. Osipov, S. N.; Kolomiets, A. F.; Fokin, A. V. Uspekhi Khimii 1992, 61, 1490-1457
- 20. Petrov, V. A.; Desmarteau, D. D. J. Fluorine Chem. 1996, 77, 175-181.
- 21. Kirchmeier, R. L.; Lasouris, U. L.; Shreeve, J. M. Inorg. Chem. 1975, 14, 592-596.
- 22. Petrov, V. A.; Belen'kii, G. G.; German, L. S. Izv. AN USSR. Ser. Khim. 1985, 1934–1935.
- 23. For example, $(CF_3)_3COH$ has been prepared by reaction of 1 and hexafluoroacetone (see Ref. 6); compound 3e was prepared by ring-opening reaction of corresponding aziridine under action of HF (Ref. 24).
- 24. Petrov, V. A. J. Fluorine Chem. in press.
- 25. Dyatkin, B. L.; Delaygina, N. I.; Sterlin, S. R. Uspekhi Khimii 1976, 45, 1205-1221.
- 26. Zeifman, Yu. V.; Ter-Gabrielayn, E. G.; Gambaryan, N. P.; Knunyants, I. L. Uspekhi Khimii 1984, 53, 431-461.